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A quantum-mechanical treatment of the power absorption of ICR ions based on 
a minimized wavepacket-approach is presented. With the aid of minimum 
wavepackets constructed using the exact wavefunctions for the ion motions in a 
homogeneous magnetic field, the power absorption of the ions in cyclotron 
resonance has been treated within the framework of the linear response theory. 
The result agrees with that obtained according to the projection-operator 
formalism. 
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1. Introduction 

Recently, Atkins and Clugston [ 1 ] have treated the power absorption of ions in ion 
cyclotron resonance quantum mechanically. Their work is based on the projection- 
operator formalism [-2]. They could show that their formalism, in the linear 
response approximation, yields the comprehensive spectral function derived by 
Comisarow [3]. The comprehensive theory reduced to the Buttrill [4] and 
Beauchamp [5] expressions in the appropriate limits. 

According to Ehrenfest's theorem, any quantum mechanical description of the 
power absorption theory should involve the results obtained with the classical 
description. The benefit of the quantum mechanical description is that one can 
present a theory which is not of ad hoc nature and which does not suffer from 
restrictions. In this sense, the method of Atkins and Clugston [ 1 ] is more useful than 
the comprehensive theory. So long as the correlation functions cannot be calculated 
from the wavefunctions, one has to decouple the equation of motion of Green's 
functions and to find the Green's function G(E) and, with the aid of the latter, 
expressions for the correlation-functions. However, this is often very difficult, and 
therefore one makes use of experimental data. 
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To circumvent this difficulty we tackle this nearly classical problem quantum 
mechanically employing the minimized wavepacket approach for the ion motions in 
the ICR cells. We express the ensemble mean value of the ion-currents according to 
the linear response theory [6-7] with regard to the perturbation due to an electric 
field uniform in space and alternating periodically with time. Using wavepackets 
perturbed through the ion-molecule interaction, we approximately evaluate the time 
correlation function of velocity. This procedure leads to the expression for the 
collision rate which agrees with Atkins' and Clugston's result. This quantity, namely 
the collision rate, is evaluable for the specified ion-molecule interaction. An 
alternative expression for the collision rate is presented for the case of an unspecified 
ion-molecule interaction. 

2. Wavepacket Approach for the ICR Ion in Homogeneous Magnetic Fields 

The field existing in ICR cells is rather complicated and inhomogeneous, because the 
simple crossed homogeneous electric and magnetic felds are superimposed across 
the magnetic field direction and the pulsing electric field between the drift plates. The 
trapping effect on the cyclotron frequency is negligibly small, so that we can neglect 
the trapping potential here. Because our main concern is the power absorption at 
present, we also neglect the drift potential which causes the ions to move in the 
direction E x B], the resulting velocity being v =c. [E[/IBI, but which contributes 
nothing to the power absorption. The ions perform a circular motion in a plane 
perpendicular to the magnetic field and may collide with the neutral background gas 
molecules in the cell and undergo the ion-molecular interaction Him. During this 
motion the ions absorb the power from the alternating rf electric field and induce the 
signal currents in the measuring plates. 

The coupled ion-molecule system which is perturbed through the pulsing electric 
field may be separated in the translational motion of the centre of mass and the 
relative motion of an ion of the reduced mass/z. Disregarding the translational 
motion of the centre of mass we can write the Hamiltonian with the magnetic vector 
potential/l(r• = B/2 • r• where r• = {x, y}, the ion-molecule interaction Him, and 
the perturbation H 1 due to the pulsing electric field 

�9 q = H 0 + H 1  (1) 

where 

1 ( p - q A ) 2 + H i m  (2) H o = 2/~ 

Furthermore, we consider the ion-molecule interaction in the coupled ion-molecule 
system to be a small perturbation to the ion motion in the homogeneous magnetic 
field. 

The motion of a charged particle in a homogeneous magnetic field has been 
investigated by many authors. For the symmetric gauge of the vector potential A, 
the exact wavefunction [-8-9] is available. This wavefunction is characterized by the 
Landau quantum number n, the momentum in the magnetic field direction hk~ and 
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the centre of the orbits r v as parameters. If we write, for the sake of brevity, 
b = qB/hc and q~ = arctg (y - Y v / X -  Xv) we get 

1 
U n  ' k z ( r  ' r m ) = ~ e l k z  �9 z 

4 
• Ir• - rMl" e-i ,o (3) 

This wavefunction indicates that the ion motion in the magnetic field direction is not 
constrained, whereas the motion in the plane perpendicular to the magnetic field it is 
constrained (through the magnetic field). To apply this wavefunction for the 
description of ion motions is not sufficiently adequate for this problem, as very high 
quantum numbers are involved because of hcor That is, the Landau energy 
levels are lying closely together. Therefore, the system would show a nearly classical 
behavior, and we may apply a wavepacket solution of this system which may be 
constructed with the aid of the exact wavefunctions and be minimized according to 
the uncertainty principle. 

The construction of the wavepackets can be accomplished using the superposition 
principle of quantum mechanics. A general solution of the Landau problem can be 
expressed in the product form ~O(r, t )=~r(z ,  t).Oz(r, t), and ~• t) can be 
expanded in terms of the stationary wavefunction (3) 

~• t )= e-"Oc/2)' ~ a,u,(r, rM) e -i"~ (4) 
n 

with the arbitrary constants a,,  which should be determined for the minimum 
wavepacket. Thus ~• t) is, apart from the phase factor e -i~'c/2)t, a periodic 
function of time, its period being that of the classical circular motion 2re/coo. This 
suggests that it might be possible to find a solution in the form of a wavepacket. To 
investigate this possibility, we calculate the uncertainty product of the radius of 
circular motion R = r• - rMand the velocity of the ions in the plane perpendicular to 
the magnetic field v• = 1 / # ( P -  q/cA). The uncertainty is defined as the root mean 
square deviation from the expectation value, i.e. (AR) 2 = ~R 2) - ~ R )  2 and (Avi) 2 
= (v~)  - (v•  2. The uncertainty product turns out to be 

AR Av• x/(n +�89 + 1) 2h/# (5) 

and has the minimum possible value of , , ~  h/l~ for the ground state wavefunction 

u0(r, rM) ~ \ ~ - j  exp hcc (A(rM)' r• - ~ (r• - r~) 2 (6) 

This wavefunction has the form of the minimum wavepacket. Therefore, we assume 
that at t = 0 the general solution (4) has the form of the normalized minimum packet 
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(6), except that the radius of the classical circular motion R is changed by an 
amount  a: 

(b iq b (R_.)2} 
r177 0) = \~-~/ exp {~c(A(rM), n - a ) - ~  

= Z a.u.(r• rM) (7) 
n = O  

Making use of  the orthogonality of the wavefunctions (3), a particular coefficient a. 
can be determined and we get, if we abbreviate y = arctg (Ay( rM) /dx ( rM))  and K = 
b/2]rM[ 

= (/~_~" 1 ei.(r+t~/al)i.(K]a]) e-~b/'~~ (8) 
a.-p.(tcla]) V \2// n ! 

where the/.(xla]) are Bessel functions. The weight functionp.(xlA R[) turns out to be, 
for the deviation a from the classical radius of  the circular motion comparable with 

the minimum uncertainty of the radius a ~ A R  = ~/(n + 1)2/b I.=o = xf2/b,  

1 e in(~ + [~/2])/.(~cx/~) (9) P.(KIAR[) = ~-~ n ! 

Inserting this weight function (9) into (4), we obtain 

~• t) = Z P.(XV/2fb)u.(r i ,  rM) e-/(" + tl/21),oc, (1 0) 
n 

This is the minimized wavepacket solution for the Landau problem, and the wave 
function can be written putting in the characteristic quantities n, hk z, r M, and a as 
follows 

~ln, gz(r , r M, a ) -  (r[n, kz; r M, a=.v /2 /b  ) (4a) 

The maximum weight is assumed at R = a/(n + ))2/b so that the classical radius of 
the corresponding eigenstate In, k~ ;rM) is equal to the average radius of the 
wavepacket. Therefore, we may conclude that the relative width 

AR A E = ( n +  )-1/2=~ ~ (11) 
R E 

at energies close to the thermal energy and in magnetic fields up to 104G reaches at 
best values up to 10 - 3, so that actually only a very narrow region AEcontributes to 
the wavepacket (10). We shall use this wavepacket as the zeroth order approxi- 
mation for the ion-molecule coupled system for the evaluation of power absorption 
in the following section. 

3. Linear Response ICR Power Absorption 

It is essential for the power absorption to determine the current caused by the electric 
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field E(t), which is uniform in space and alternates periodically with time, the 
frequency being c-1" 

Y (12) E(t)= Elfi C~ C~ en~' fi-[Yl 

because this current induces the signal voltage in the drift plates, and this signal 
voltage is the quantity actually measured. Inserting d = q. r for the dipole operator, 
the perturbation operator corresponding to (12) is equal to 

H1 = - E dy cos c~lz e n~ (13) 

Under the influence of the perturbation (13), an electric current is induced in the drift 
plates, which can be determined with the aid of the interaction picture for the current 
operators j (t) = exp (iHot/h) -j (0) exp ( - iHot/h) as follows: 

( j ( t ) )  = ( j ( t ) )  o + ~  d z ( [ j  (t), Hi (z) ] )  (14) 

where ( .  �9 �9 ) indicates that we have to average over a great canonical ensemble, the 
averaging operation being: 

(vie ~//0... Iv> 
( . . . ) _  v (15) 

<vle-Z~/~ 
v 

where 0 = kBT and Iv) are the eigenstate vectors of the coupled ion-molecule system 
Ho = 1 / 2 # ( P -  q/cA) 2 + Him. The ensemble average of the equilibrium state ( j( t))o 
disappears because there arises no net current under the influence of the magnetic 
field alone. 

For the sake of convenience, we introduce a complex density of currents and dipole 
strength. The density of the n~ + ion currents per unit volume is related to the ionic 
velocity in the magnetic field according to 

+ . .  + ~ f ~  .~ b +_iy)}(t) j+(t)=ni qv• q im l ~ x + ~ y - ~ ( x  

The dipole strength is equal to 

d• = q(x + iy)(t) 

Dropping the vanishing ensemble average ( j( t))o,  
representation for the average currents: 

(16) 

(17) 

we obtain the following 

in+ q i (j+(t)) = ~ E  1 d'~([v• d~('c)) e i~ 

- -  ~ x 3  

(18) 
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Integrating by parts, we write Eq. (18) in the form 

in~ q { e i'~ +"t 
( j •  = T E I  ([v• d_T(0)] ) t-e) i +t/ 

Noting that 

_ ei~ 
i &<[v• &(t)]>/~-~j 

- - c O  

d r (~) = qv ~ (z), [v • (0), d r (0)] = 2 h .q 
i# 

and using the relation 

09) 

G• = ~ j •  =~E~- i dt e- '~  
0 

we get the conductivity tensor from Eq. (19): 

•• q2 n+ q 2 
| dt'([v• -i'~ ( t ' = t - ~ )  (20) a • (o~) = - l Ste) he) 
II 

0 

The first term in (20) corresponds to the electrical conductivity of the system of free 
ions and is not connected with the ion-molecule interaction. The calculation of the 
power spectrum depends on the evaluation of the correlation function 
< [v • (t'), v ~ (0)] >. This time correlation function of the velocities may be rearranged 
with the aid of the definition of the ensemble averaging operation, making use of the 
principle of completeness of the eigenfunctions of the coupled ion-molecule system 
Ho as is usually done in the dispersion relation theory [10]. 

Performing this step and using the relation between the symmetrized and the non- 
symmetrized velocity time correlation functions <{v(t)v(z)}+> =�89 (-he)/0) 
+ 1)(v(t)v(z)) we can express the conductivity tensor in the quantum form of the 
Nyquist relation, as generalized by Callen and Welton [11] in the absence of 
magnetic fields 

a•176 n+qZtanhhC~ f e-i~ - # c o -  he) ~ dt" _ m(t') (21) 
- - o 0  

where the time correlation function is defined by 

G• _v(t- z) = ({v• ) (22) 

Our problem is now to evaluate the time correlation function (22) which satisfies the 
equation of motion 

1 
d • ~ (t - z) = ih ( { [v + (t'), Ho], v -v (0)} + ) (23) 
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The Green's function method which is normally used to tackle the problems of 
evaluation of time correlation functions, does not necessitate any knowledge about 
the eigenfunctions of the system. On the other hand, one is confronted with the 
problems of decoupling a chain of coupled equations for the Green's functions. 
Moreover, one has to assume that the Fourier transform of the double time Green's 
function is found somehow, Proceeding that way one may construct from G(E) the 
expressions for the time correlation functions. This decoupling procedure is 
sometimes very complicated. Therefore, we are going to solve the equation of 
motion (23) with the aid of approximate eigenfunctions. 

Using the Hamiltonian H 0 =/7o + Him where /7  o is the Hamilton.ian for an ion in 
magnetic fields, we can separate the time correlation function in (23) into two parts" 

1 
d+_ ({Iv +_(t),/7o3, 

+ ~  ({[v+_(t), Him], v_v_(0)} +) (24) 

Carrying out the ensemble average operation we make use of the first order 
approximation for the eigenfunction of H o 

Iv) (1)= In) + ~ (E,- Ho + ih~)- 1. Im)(mlHim[n) (25) 
m T ~ l  

and the high temperature approximation expression for the ensemble average with 
the eigenfunctions of the zeroth order approximation 

2 1 
({v+(t), v_=(0)} +) o ei~ (26) 

This approximation is applicable for most experimental conditions, and the 
restriction is not a very strict one, the maximum value for (hc~c/kBT) 1/2 is 10 -3 
Assuming that the odd powers of the transition moments (nlHimlm) vanish, and 
making use of the fact that v + and v_ are the lowering and the raising operators. 
respectively, for the wave function u. (r• ; rM) the equation of motion for the time 
correlation function (24) becomes 

G+ _~, o(t) = (_+ ; coc- ~ ~)G~ ~, o(t) (27) 

where ~ is the collision rate 

~ = ~  dt'({[v+_(t')Him][Himv+(O)]}+) o (28) 

0 

This is the collision rate which Atkins and Clugston [ 1 ] have obtained recently using 
the projection operator techniques. Evaluation the ensemble average with zeroth 
order approximation eigenfunctions and using the relation (26), we can express the 
collision rate in a more familiar way, namely 

~=~- ~ I(.l[Himlm)l 2 b(E-E,,.) (29) 
l,m:C-n 
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where the state vectors [l) and Ira) correspond to the states for the wavepacket ]l) 

=ln',k~;rM, AR= and [rn) = In , k ~ ; r ~ , A R =  b). 

The equation of motion (27) is readily solved for the initial condition G+-T, 0(0) 
= ({v + (0)v + (0)} + ) 0 = 2/#/?. Inserting this solution into Eq. (21) and performing the 
high temperature approximation, we obtain for ~<<co and &o = Ico - cod <<co + coc 

.+(co): n q2 n:q2 1 z ,co /~ \ ~ T T ~ j  [ - e x p ( - ( i ~ c o + ~ ) t ) ) .  (30) 

The currents induced by the pulsing electric fields in the drift plates can be deduced 
from Eq. (30) and Ohm's law as 

jy ~ (n + q2Ea/2p) Re ( \ ~  ~ j  L - exp ( - (i cSco + ~)t] e i~ (31) 

It is obvious that this current induced by the electric field E(t)= Eay/lyl cos coat, 
after performing the cycle average, yield the power absorption expression which is 
the comprehensive spectral function by Comisarow [3], as Atkins and Clugston 
have shown in their paper. It is also obvious that the comprehensive spectral 
function leads to the functions for high and low pressures. Therefore, there is no 
need to give further details in this paper. 

4. Discussion 

In this paper, a quantum mechanical treatment of the motion of the ICR ions has 
been given. For  the investigation of the nearly classical behavior of ions we have 
used the minimized wavepacket solution with which we could treat the power 
absorption problem quantum mechanically. Knowing about the wavepacket 
solution and about the wavepacket perturbed through the ion-molecule in- 
teractions, and assuming the completeness of the eigenfunctions for the coupled ion- 
molecule system, the expression for the collision rate is obtained. This expression is 
equivalent to that of Atkins and Clugston. Thus we have avoided the decoupling 
procedure of the chain of equations for the double time correlation functions and the 
analytical continuation of Green's functions G(E) in the region of complex E. 
Furthermore, we have presented the expression for the collision rate in a more 
familiar form with which we may evaluate the half width of collisionally broadened 
ICR spectral lines and compare them with measurements, if the ion-molecule 
interactions are specified. 
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